
Section 1: Lecture 2
Object Oriented Concepts

Access Modifiers: Controlling access to a class,
method, or variable (public,

protected, private, package), Other Modifiers,
Polymorphism: Overloading,, Inheritance,

Overriding Methods, Abstract Classes, Reusability,
Class’s Behaviors.

Any object oriented language compose of some
common features one should know

•Classes

•Objects

•Programming Encapsulation (Information

•Hiding)

•Inheritance

•

Classes & Objects

Class is a collection of member data and member functions.

objects contain data and code to manipulate that data. The
entire set of data and code of an object can be made a user-
defined data typ with the help of a class. In fact, objects are
variables of type class. Once a class has -been defined, we
can create any number of objects belonging to that class.
Each object is associated with the data of type class with
which they are created: A class is thus a collection of
objects of similar type. For example, mango, apple and
orange are members of the class fruit: Classes are user-
defined data types and behave like the built-in types of a
programming language. For example, the syntax used to
create an object is no different than the syntax used to
create an integer object in C. If fruit has been defined as a
class, then the statement fruit mango; will create an object
mango belonging to the class fruit

Data Abstraction and
Encapsulation

 The wrapping. up of data and functions into a single unit (called

class) is known as encapsulation. Data encapsulation is the most
striking feature of a class. The data is not accessible to the
outside world and only those functions which are wrapped in the
class can access it. These functions provide the interface between
the object's data and the program. This insulation of the data
from direct access by the program is called data hiding.

 Abstraction refers to the act of representing essential features
without including the background details or explanations.
Classes use the concept of abstraction and are defined as a list of
abstract attributes such as size, weight and cost, and functions to
operate on these attributes. They encapsulate all the essential
properties of the objects that are to be created. Since the classes
use the concept of data abstraction, they are known as Abstract
Data Types (ADT).

Inheritance

 Inheritance is the process by which objects of one class acquire the

properties of objects of another class. It supports the concept of
hierarchical classification. For example, the bird robin is a part of the
class flying bird which is again a part of the class bird. As illustrated in
Fig.l.8, the principle behind this sort of division is that each derived
class shares common characteristics with the class from which it is
derived. In, OOP, the concept of inheritance provides the idea of
reusability .This means that we can add additional features to an
existing class without modifying it. This is possible by deriving a new
class from the existing one. The new class will have the combined
features of both the classes. The real appeal and power of the
inheritance mechanism is that it allows the programmer to reuse a class
that is almost, but not exactly, what he wants; and to tailor the class in
such a way that it does not introduce any undesirable side effects into
the rest of the classes.

 Note that each sub class defines only those features that are unique to
it. Without the use of classification, each class would have to explicitly
include all of its features.

Polymorphism

 Polymorphism is another important OOP concept Polymorphism

means the ability to take more than one form.. For example, an
operation may exhibit different behavior m different instances.. The
behavior depends upon the types. of data used in the operation For
example, consider the operation of addition. For two numbers, the
operation will generate a sum lf the operands are strings, then the
operation would produce a third string by concatenation. Figure, l.9
illustrates that a single function name can be used to handle different
number and different types of arguments. This is something similar to
a particular word having several different meanings depending on the
context.

 Polymorphism plays an important in allowing objects having different
internal structures to share the same external interface. This is means
that a general class of operations may be accessed in ~?the same
manner even though specific actions associated with each operation
may differ: Polymorphism is extensively used in implementing
inheritance.

Access Specifiers
 Access specifiers defines the access rights for the statements or

functions that follows it until another access specifier or till the
end of a class. The three types of access specifiers are "private",
"public", "protected".

 private: The members declared as "private" can be accessed only
within the same class and not from outside the class.

 public: The members declared as "public" are accessible within
the class as well as from outside the class.

 protected: The members declared as "protected" cannot be
accessed from outside the class, but can be accessed from a
derived class. This is used when inheritance is applied to the
members of a class.

